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ABSTRACT 

Working memory (WM) has repeatedly been shown to be an important factor in visual search.  

For instance, there is evidence that both spatial and visual WM load lead to a decrease in search 

performance while search efficiency has been reported to be affected by spatial WM load only.  

In three experiments, we tested how two different types of spatial WM load affect visual search 

performance and efficiency. Participants had to memorize the spatial locations of two or four items 

presented either serially (Experiment 1) or simultaneously (Experiments 2 and 3) prior to a search for 

a target letter in a display of 5, 10 or 15 letters. In Experiment 3, participants additionally performed a 

verbal WM task. The results showed that, compared to a no-load condition, search performance 

decreased in the two- and four-load conditions, regardless of the type of spatial WM load. No 

response time difference was found between the two and four-load conditions. Furthermore, the 

additional verbal WM task had no effect on search performance. Finally, and in contrast to previous 

findings, search efficiency was not affected by either type of spatial WM load suggesting that search 

performance, but not search efficiency, is affected by spatial WM load. 

 

Keywords: visual attention, visual search, working memory load. 
 

 

1. INTRODUCTION 

 
Visual search is an everyday behavior in which we search for one or more target 

objects within a set of non-targets, so called distractors. In laboratory settings, visual search 

paradigms are often used to investigate attentional processes. Usually, participants are 

required to make a manual response regarding the absence or presence of a target in a 

search display that consists of a number of search items. The main variables of interest are 

commonly search performance (i.e., response times), search accuracy (e.g., target hits and 

misses) and search efficiency (i.e., search rate per additional item in the display). Also, the 

measurement of the eye movements during search (so called saccades) is a further method 

to investigate visual search and its related processes (e.g., Duchowski, 2017; see Carter  

& Luke, 2020 for a recent review). Theories of selective attention propose a distinction 

between parallel and serial visual search (e.g., Treisman & Gelade, 1980, Treisman, 1988, 

Wolfe, 1994). In a parallel search (feature or “pop-out”), the target is distinct in one 

dimension from a set of rather homogeneous distractors (e.g., a blue ball among red balls) 

and can hence be found immediately and regardless of the number of objects in the search 

display. As a result, in parallel searches, response times are not affected by the presence or 

absence of the target. In a serial search, the search items are more heterogeneous and 
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therefore must be searched serially to determine whether the target is present or not. 

Consequently, serial target-absent searches last longer than target present searches because 

participants have to check all items in order to make a valid decision. In serial  

target-present searches, participants on average find the target when they have searched 

through the halfway of the display (see e. g. Wolfe, 2020, for a review). 

For a long time, one of the most important questions was whether and to what extent 

memory is involved in visual search. Horowitz and Wolfe (1998) claimed in their seminal 

publication that visual search is memoryless: i.e., that we do not use memory when 

searching for targets. In their study, participants were asked to find a target letter T in a 

display of L-shaped distractor letters. The target was present in half of the trials. They 

implemented two conditions: a random and a static condition. In the random condition, the 

locations of the stimuli changed every 111 msec, whereas in the static condition the item 

locations were fixed throughout the search. Therefore, in the random condition the usage of 

memory was not possible whereas in the static condition search would benefit from 

memory as the letter position can be remembered, which should lead to a more efficient 

search. Surprisingly, the results indicated that the search efficiency was comparable in both 

conditions. Hence, Horowitz and Wolfe (1998) suggested that visual search does not rely 

on memory processes. However, most of the research which has emerged after this study 

has shown that memory plays an important role in visual search (e.g., Kristjánsson, 2000; 

Gilchrist & Harvey, 2000; Lleras, Rensink, & Enns, 2005; Shen & Jiang, 2006; Beck, 

Peterson, Boot, Vomela, & Kramer, 2006; Körner & Gilchrist, 2008; Höfler, Gilchrist,  

& Körner, 2014, 2015; Körner, Höfler, Ischebeck, & Gilchrist, 2018; Hout & Goldinger, 

2015) and the interest of research shifted to the question on the properties of this memory. 

For instance, Beck, Peterson, Boot, Vomela, & Kramer (2006) suggested that not individual 

features but rather the locations of the presented stimuli are memorized in visual search. 

However, we showed that, when the same display has to be searched twice, participants can 

profit from the about last four items they had previously inspected during the first search. 

Participants can then use the item identity and location information of these items to 

enhance search performance in the second search (Körner & Gilchrist, 2007; Höfler et al., 

2014; Höfler et al. 2015).  

Overall, the concept of working memory (WM) proposes a system of limited capacity 

that consists of three components: a verbal storage system (the phonological loop), a visual 

storage system (the visuospatial sketch) and a central executive (e.g., Baddeley, 2003; 

Baddeley & Logie, 1999). The interplay of these subsystems ensures that information can 

be temporally stored and manipulated. Moreover, and important for the current work, it 

also implies that location and object information are handled by and stored in working 

memory subsystems. Previous research has indeed indicated that WM– and especially 

spatial WM - is an important factor in visual search (e.g., Oh & Kim, 2004; Woodman  

& Luck, 2004; Manginelli, Geringswald, & Pollmann , 2012). In experiments in which the 

influence of different types of WM on visual search is investigated, participants are 

typically presented with a set of objects and are asked to memorize the locations (to test for 

the influence of visuo-spatial WM) or specific features (to test for visual WM) of the 

presented objects while performing a subsequent visual search task. If visual search relies 

on the respective type of WM, one would expect to see a negative effect in terms of search 

performance as well as search efficiency when WM load is increased because there are less 

resources left for the visual search task. Typically, findings show that overall search 

performance decreases in such dual-task paradigms. This means that the search takes longer 

due to the memory load regardless of the type of WM load (visual or spatial; e.g., He  

& McCarley, 2010, Oh & Kim, 2004; Woodman & Luck, 2004). In contrast, the findings 
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regarding WM load on search efficiency (i.e., the search rate per additional item in the 

display) are rather unclear. For instance, Woodman, Vogel, and Luck (2001) showed that 

memorizing object features such as no, two or four object colors prior search affected 

search performance but had no effect on search efficiency. Solman, Cheyne, and Smilek 

(2011) analyzed the eye movements of their participants while they searched a display 

under different visual WM load conditions and found similar findings as Woodman et al. 

(2001). Solman et al. (2011) found that fixations were made farther away from the search 

items (i.e., they were less precise) and previously inspected locations were more often 

refixated when a visual WM load was added. On the other hand, it has been demonstrated 

that memorizing the spatial location of objects affected both performance and efficiency. 

For instance, Oh and Kim (2004) had participants memorize four item locations prior to the 

search task (searching for an upright L among rotated L-shaped objects) in a dual-task 

condition and compared the search performance and efficiency with a search-alone 

condition. Their results showed that search times increased in the dual-task condition 

whereas search efficiency decreased. The same pattern of results was also reported by 

Woodman and Luck (2004). They had participants memorize two item locations prior to 

the search and also showed that participants needed longer to find the target in the dual-task 

condition and that the search efficiency was worse compared to the search-only condition. 

Moreover, findings from Anderson, Mannan, Rees, Sumner, and Kennard (2008) suggested 

that also verbal WM load affects search efficiency in serial searches to the same extent as 

spatial WM load.  
Oh and Kim (2004) had participants memorize four item locations at once prior to the 

search task, whereas in Woodman and Luck (2004), they had to memorize two serially 

presented item locations prior to the search to prevent participants from forming a  

shape-based mental representation that would not require spatial WM resources. However, 

these different presentations of WM load (all at once vs. serially) could have actually 

affected search differently. Moreover, in both studies, participants were required to perform 

an articulatory suppression task throughout the experimental trial. It is unclear whether this 

verbal task might have even increased the effect of the visuo-spatial WM load. In the 

following experiments, we therefore wanted to test in greater detail whether and how 

different types visuo-spatial WM load affect a visual-search task that consists of letter 

stimuli. In all experiments, we had participants search for a target letter in a letter display 

with 5, 10, or 15 different letters while they were additionally asked to memorize the 

locations of zero, two or four squares. In Experiment 1, these squares were presented 

serially; in Experiments 2 and 3, they were presented at once. In Experiment 3, participants 

were additionally required to perform an articulatory suppression task. For all experiments, 

we expected a decrease in search performance when WM load is added such that the 

searches should last longer with increasing WM load. However, we expected that the effect 

of WM load on search efficiency, as measured by the search rate, depends on the type and 

the amount of WM load. That is, increasing WM load should lead to less efficient searches 

(steeper search rates), and this effect should be more pronounced in Experiment 3 (verbal 

and spatial WM load) than in Experiment 2 (spatial WM only). Furthermore, we expected 

search efficiency to be more affected when the to-be-remembered locations were presented 

serially than if they were presented all at once (Experiments 1 vs. Experiment 2). 
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2. METHOD 

 

2.1. Design 
In all three experiments, a 3 (memory condition) × 3 (search condition) × 2 (target 

presence) within-subjects design was used. That is, participants had to memorize either 0, 

2, or 4 item locations (no vs. low vs. high memory load) before searching a display 

consisting of either 5, 10 or 15 letter items. Participants indicated the search target’s 

presence (present vs. absent) in the task via button press. That is, they pressed the left 

button of a two-button response box for an “absent” response and the right button for a 

“present” response. The target was absent on half of the trials. The variation of the memory 

condition was block-wise and counterbalanced across participants; all other factors were 

varied randomly within the blocks. We measured manual response times from display onset 

to the manual response as the main dependent variable. 

 

2.2. Participants 
We recruited 20 participants in Experiment 1 (18 female, 2 male; M = 23.3 years;  

SD = 2.2), 20 in Experiment 2 (16 female, 4 male; M = 23.8 years; SD = 3.9) and 24 

participants in Experiment 3 (12 female, 12 male; M = 23.2 years; SD = 2.3). This sample 

size is similar to previous experiments on this topic (He & McCarley, 2010, Oh & Kim, 

2004; Woodman & Luck, 2004). All participants reported normal or corrected-to-normal 

vision. All of them gave written informed consent before the start of the experiment and 

received course credit for their participation. The experiments were approved by the ethics 

committee of the University of Graz. 

 

2.3. Apparatus, stimuli and procedure 
In all experiments, a fixation cross was presented at the center of the display for 750 

ms at the beginning of a trial (see Figure 1). Furthermore, in Experiment 3, two different 

numbers (randomly selected from the numbers 1 to 9), were then presented for 1,000 ms 

and the participants were asked to repeat these numbers aloud throughout the whole trial. 

Then the fixation cross was presented again for 750 ms, followed by the memory display 

for 1,000 ms. Participant’s task was to memorize the location of 0, 2 or 4 light grey squares 

(0.9 x 0.9 degrees of visual angle; d.v.a.) that were located randomly at 12 possible 

locations around the center of the display. 

In Experiment 1, the 2 or 4 memory items were presented serially for 500 ms and 250 

ms respectively (i.e., 1000 ms in total). In Experiments 2 and 3, all memory items were 

presented at once for 1,000 ms, followed by the search display. The display consisted of 5, 

10 or 15 letters. The letters (size: 0.32 d.v.a.) were presented in light grey (RGB: 128, 128, 

128) within the grid cells of an invisible 7 × 7 grid (25.9 × 25.9 d.v.a.) and were surrounded 

by a circle with a diameter of 0.9 d.v.a. For each trial, the letter stimuli were randomly 

selected from 16 upper-case letters (A, E, F, G, H, K, L, M, O, P, R, S, T, U, X, and Z). 

The letters were written in Arial font and randomly deviated horizontally and vertically 

from the center of the grid cell by 0.0 - 0.13 d.v.a. The target letter, which was present in 

half of the trials, was randomly selected from these l5 letters in the display. In a  

target-absent trial, the target letter was the one letter from the originally 16 letters that was 

not presented in the display.  

At the beginning of the search, the target letter was announced via head set 

simultaneously with the onset of the search display. Participant’s task was to search for the 

target in the display and to give a manual present or absent response on the two-button 
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response box. After this manual response, a test display consisted of a single memory item 

was presented, and participants had to decide via a button press whether the position of the 

test stimuli matched with one of the to-be-remembered positions from the memory display. 

In case of the no-load condition, the memory display and the test display remained blank. 

After this, the display was cleared, and a new trial started. 

Participants sat in a darkened, sound-proof cabin at a distance of about 63 cm in front 

of a 21’’ CRT monitor with a resolution of 1,152 x 864 pixels and a refresh rate of 100 Hz. 

A chin rest was used to minimize head movements. Stimuli were created using Microsoft 

Visual C++ 2008 Express Edition. Each participant completed one session of three blocks 

of 90 trials each, lasting about one hour. As stated above, the memory condition was varied 

block-wise whereas all other factors within an experiment were varied within blocks. The 

sequence of memory conditions was counterbalanced across participants. Before each 

block, 10 practice trials were conducted. 

 
Figure 1.  

Sample procedure of a trial in Experiment 3 (Stimuli are not drawn in scale). 
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3. RESULTS 

 

3.1. Error rates 
In all experiments, we excluded data from participants with a higher error rate than 10% 

in the visual search task or when they conducted the memory task on chance level, as 

indicated by a binomial test. In Experiment 1, data of 17 participants entered the analysis. 

The error rate of these 17 participants was M = 3.7 % (SD = 1.6 %) in the search task and  

M = 18.2 % (SD = 6.9 %, low load) and M = 28.6 % (SD = 5.9 %, high load) in the 

memory task. A paired t-test showed that the error rate for the memory task was 

significantly higher for the high-load vs. the low-load condition, t(16) = 6.35, p < .001.  

In Experiment 2, data from 14 participants were included in the analysis. The error rate in 

the search task was M = 3.4 % (SD = 2.5 %); the error rate in the two memory tasks was  

M = 14.5 % (SD = 7.2 % low load) and M = 26.0 % (SD = 9.1 %, high load). This latter 

difference was reliable, t(13) = 7.89, p < .001. In Experiment 3, data of four participants 

had to be excluded from analysis because of the criteria defined above. For the 20 

remaining participants, the average error rate for the search task was M = 2.9 % (SD = 2.3 

%) and for the memory task M = 16.3 % (SD = 8.0 %, low load) and M = 23.2 % (SD = 8.1 

%, high load). A t-test for repeated measures indicated again that the error rate for the  

high-memory load condition was significantly higher than for the low-load condition,  

t(19) = 3.87, p = .001. 

 

3.2. Search performance 
Table 1 shows the mean response times and standard deviations for all load 

conditions and display sizes averaged across participants’ individual means for all three 

experiments. A 3 × 3 × 3 ANOVA for repeated measures with display size (5, 10, or 15 

letters) and load condition (no, low or high-load condition) as within-subjects factors and 

experiment (1 to 3) as between-subjects factor showed no effect of experiment, F < 1, but a 

significant effect of display size, F(1.25, 59.96) = 1134.94, p < .001, p
2 = .96.  

Bonferroni-Holm corrected t-tests indicated that participants needed longer to find the 

target as display size increased (all ps < .001), reflecting a standard finding in serial visual 

search (e.g, Wolfe, 2020). Furthermore, the main effect of load condition was also 

significant, F(2, 96) = 28.75, p < .001, p
2 = .37, such that response times increased from 

the no-load condition  to the low-load condition (p < .001) while no such difference was 

found for the low-load vs. high-load condition (p = .35). However, none of the interactions 

were significant (all ps > .20).  
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Table 1. 

Mean response times and search rates in ms (standard deviation) for all experiments and 

conditions. 

  

No load Low load High load 

Expt. 1 DS 5 1,901 (228) 2,168 (463) 2,265 (637) 

 

DS 10 3,031 (353) 3,411 (644) 3,433 (773) 

 

DS 15 4,040 (658) 4,274 (816) 4,291 (950) 

 

Search rate / 

item 214 (49) 211 (42) 203 (52) 

Expt. 2 DS 5 1,829 (242) 2,217 (448) 2,174 (1,012) 

 

DS 10 2,931 (403) 3,478 (763) 3,381 (696) 

 

DS 15 4,061 (685) 4,504 (1012) 4,582 (831) 

 

Search rate / 

item 220 (57) 219 (73) 232 (55) 

Expt, 3 DS 5 1,931 (250) 2,173 (385) 2,368 (507) 

 

DS 10 3,139 (445) 3,497 (586) 3,672 (745) 

 

DS 15 4,205 (589) 4,584 (845) 4,700 (795) 

 

Search rate / 

item 227 (42) 241 (56) 233 (48) 

Note. DS = Display size.  

 

3.3. Search efficiency 
The average search rates, indicated by the search time per item as a function of 

display size for each experiment, can be found in Table 1 and Figure 2. A mixed-way 

ANOVA with WM load condition as within-subject and experiment as between-subject 
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factor showed neither a reliable difference across experiments, F(2, 48) = 1.48, p = .24 nor 

between WM load conditions, F < 1. Also, the interaction was not significant, F < 1. This 

suggests that the different types of WM load used in the experiments did not affect search 

efficiency. 
 

Figure 2.  

Search rate per item for the three experiments depending on the load conditions. Error bars 

represent the standard error. 

 

 
 

4. DISCUSSION  

 
The aim of the current three experiments was to investigate whether and how 

different types of visuo-spatial working memory load affect a visual search task. To this 

end, we had participants hold zero, two or four item locations in WM while they performed 

a visual search task in a letter display. The item locations to-be-memorized were either 

presented parallel or serially and in one experiment, participants were additionally asked to 

perform an articulatory suppression task. Previous findings have indicated that spatial WM 

load affects both visual search performance and search efficiency (e.g., Oh & Kim, 2004; 

Woodman & Luck, 2004). Partially in line with these findings, we also showed that search 

performance decreased with increasing spatial memory load. That is, if participants had to 

memorize two item locations prior to the visual-search task, search times increased 

compared to a control condition without WM load. This was regardless of whether the 

search display consisted of five, ten, or fifteen letters and regardless of whether the 

locations of the memory items were presented simultaneously or serially, or whether 

participants had to perform an additional verbal suppression task. Moreover, and in contrast 

to findings from the literature (e.g., Oh & Kim, 2004; Woodman & Luck, 2004), there was 

no additional increase in the search times from the two-item to the four-item WM load 

condition in any of the search conditions and experiments. Overall, this suggests that these 

different types of spatial WM load affected visual search in a similar way. The lack of 
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finding a further decrease of search performance from the two- to the four-item WM 

condition might also indicate that the two-item load already occupied all WM resources.  

Furthermore, although the visuo-spatial tasks affected search performance 

significantly, we could not replicate the findings from Oh and Kim (2004) and Woodman 

and Luck (2004) that the additional spatial WM load affected search rates as well. Search 

did not become more inefficient when spatial WM load was added. Such findings in which 

search efficiency is not affected by WM load are commonly observed in experiments that 

use visual WM tasks (e.g., Solman, et al., 2011, Woodman et al., 2001) and it is commonly 

argued that, as long as the search efficiency is not affected by an additional WM load, also 

the search process is not affected. However, as described above, Solman et al. (2011; see 

also Solman, Smilek, & Eastwood, 2009) suggested that a (non-spatial) WM load does not 

necessarily affect search efficiency and the question remains if this is also true for spatial 

WM loads. They monitored participants’ eye movement behavior and investigated the time 

spent in the three different phases of the search while participants were required to hold up 

to four object colors in WM: between the onset of the display until the first saccade, 

between the first saccade and fixation of the target, and between fixation of the target and 

the manual response. Their findings showed that WM load affected all phases of the search 

and in which fixations tended to become more imprecise resulting in longer search times. In 

the light of the current findings, it is therefore possible that eye movement behavior also 

changed during search when visuo-spatial WM load was increased, although this change is 

not reflected in the analysis of search efficiency. Hence, additional experiments in which 

the eye movements are monitored during search are necessary to further investigate these 

diverging effects of WM load on search performance and search efficiency. A further 

explanation for this inconsistency regarding the different effect of spatial WM load on 

search performance and search efficiency was recently provided by Xin and Li (2020). 

They argued that the increased extent of executive control to maintain a (non-spatial) WM 

load might decrease the participants’ confidence level such that the observed response time 

differences are mainly due to the stage of response selection. However, it is still unclear 

and an open question for future research whether such an assumption would hold as true for 

spatial WM load tasks as used in previous experiments (e.g., Oh & Kim, 2004; Woodman 

& Luck, 2004) and our work.  

Taken together, the current findings demonstrate that different types of spatial WM 

might affect a visual search to the same extent. This might be of help for future studies that 

to investigate the influence of spatial WM and visual search with regard to different context 

(e.g., individual differences in spatial WM; see Takahashi & Hatakeyma, 2011) or in 

clinical settings. 
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