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ABSTRACT 
With a prolific amount of computer code available on the web, students are able to use the Internet  
as a compendium of solutions to computer programming problems. Web search is not only a  

problem-solving strategy with which students are familiar with and have highly developed skills from 
years of practice and implicit cultural knowledge, it is also an approach anticipated in real-world 
contexts for computer programming (Treude, Barzilay, & Storey, 2011). This chapter is an account of 
the author's transition from pedagogy disallowing the use of solutions copied from web pages to a 
pedagogy which encourages students to incorporate found solutions into their work. Instead of 
penalizing students for “cheating” when they adopt other programmer's solutions to computer 
programming problems, emphasis is instead placed on student's explanations of the solutions they 
provide regardless of their origin. The effectiveness of this approach is predicated on the idea that the 
ability to produce comprehensive explanation of a programming solution is a good indicator of 

programming competency. Otherwise, there is no reason to think adopting someone else's code is a 
valid learning activity. There is literature to support the idea that explaining and studying (sometimes 
characterized as reading) existing solutions and program code significantly improves students 
learning and development of problem-solving strategies (Corney et al, 2014). This chapter suggests 
similar benefits may accrue from code that is not selected as part of the curriculum, but found by the 
individual students. More speculative aspects of the approach are the absence of specific instruction 
in specific problem-solving skills, and absence of a requirement that students eventually shift to 
independent composition of code as a later stage of demonstrating programming competence. 

Emphasis is shifted away from the text of computer code solutions, towards student description and 
assessment of computer code solutions. Students provide their descriptions in a combination of 
natural language and Unified Modeling Language. Thus design and implementation is separated as 
advocated by Falkner, Vivian, and Falkner (2014), and the Internet no longer serves as a compendium 
of pre-packaged solutions. Informal observations regarding a one semester application of this 
approach conclude the chapter. This chapter is an extended version of Brown (2015). 
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1. THE INTERNET SEARCH STRATEGY 

 

Students have been practicing Internet skills for most of their lives; whereas learning 

a new problem-solving strategy and trying to apply it to assigned school work may be an 
inherently bad approach from the student's point of view: difficult, time-consuming and 

prone to failure. Searching the Internet for a completed answer that is a close enough fit to 

the problem is quicker, more efficient and likely to be more successful. Circumventing new 

intended or incidental learning may not be terribly relevant if the student's personal 

objective is effective and efficient solution to an assigned problem rather than learning or 

practicing new skills. 
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Computer programming is one discipline with a heavily problem-oriented curriculum. 

Programming problems are often assigned to encourage students to develop their 

programming skills. Curricula, at least at collegiate level, have been criticized for not 

providing specific problem-solving instruction, instead relying on sequencing of problems 

to progress the curricular topics. (Guzdial, 2015). However, if we expect students to 

regulate their own learning strategies, appropriate domain-specific knowledge about 

solving problems is a prerequisite (Winne, 1995). Veenman, Elshout, and Meijer (1997) 

note that novices are “restricted by a poor working method which stems from a lack of 
domain-specific knowledge” (p. 188) and they resort to a cycle of ‘impasses and local 

repairs’ without specific strategies to tackle conceptually difficult problems. They tend to 

delay problem solving until absolutely necessary, resulting in a need to rely on a general 

mega-strategy that can solve their entire problem in one operation. Given that students 

without substantial tutelage in solving programming problems are reduced to adopting a 

general strategy, it should not be surprising that students would retreat to using a familiar 

Web search strategy for solutions in preference to attempting to decompose and analyzing 

an unfamiliar programming problem. 

In introductory computer programming, the particular strategy for producing a 

program is seldom assessed: instead, the quality of software submitted is the measure of 

student performance. An analogy in a math class might be to only assess the final answer, 

without considering the validity of a student's “workings” that get them to a particular 
answer. We might tell our students not to copy answers from the Internet, that solving the 

problem independently is important learning exercise, but seldom review what 

programming skills the student actually has acquired. No one objects if students seek 

alternative explanations of course topics, or review elements of a problems already 

discussed, yet the same students are expected to curtail the kind of investigation they 

undertake and assistance they accept at some vague point with respect to assigned 

problems. This contrasts dramatically with industrial or working environments, replete with 

on-line communities that provide solutions and colleague helpers. Programmers in industry 

are expected to use these resources (Treude et al., 2011). 

There are advocates of unconstrained access to the Internet. Professor Sugata Mitra, 

(Mitra, 2015) for example, has popularized the concept of minimally invasive education. 
This includes encouraging students to develop their own learning strategies in an 

environment enriched with materials (particularly Internet access) and with minimal 

instruction. 

The pedagogical shift advocated in this chapter is substantially a question of 

evaluation. If performance is about a good problem solution, then access to the Internet 

should be a non-issue; only the quality of the student solution is relevant. If the solution or 

answer is used to assess the student's independent competence or comprehension, then 

allowing the student to tap a community of knowledge is problematic. However unique the 

assigned problem, the global community can eventually produce a high level of assistance, 

through user groups, social networks and contact with students in similar programs. This is 

poignant in Computer Science, which relies on canonical problems that are easily 
recognized and paired with solutions on the Internet. The proposal advocated in this chapter 

is to stop attempting to deny students access to a global community of help, instead to shift 

the emphasis in evaluating their performance. 
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2. PROGRAMMING CURRICULA ARE A SEQUENCE OF PROBLEMS 

 

An early problem in computing curricula is sorting; it is part of the implicit canon of 

knowledge in Computer Science, and incorporates both programming and algorithm design, 

two problem-solving contexts within the discipline. A typical statement of the sorting 

problem is: “Write a program which takes an arbitrary sequence of integers as input, and 
outputs the same integers in ascending sequence”. As a problem in algorithm design, 

solution strategies for sorting should be compared and contrasted. This will often be 

undertaken as lecture or presentation material in computing curricula; but some variant of 

the sorting problem might be given to students as an algorithm design and/or programming 

assignment. 

Explanations, solutions and program code for solving this problem are extensively 

available on the Internet. An instructor might try to avoid the more popular solutions by 

assigning a more obscure approach for the student to examine. However, even less popular 

solution strategies (such as the ShellSort algorithm, cf. Sun Microsystems, 2008) have 

exhaustive source material and solutions on-line. A student can easily produce a computer 

program without studying or understanding the problem; they can usually by-pass the 
explanation part of the solution material and simply copy the program code. (While also 

true regarding textbook sources, searching tools make the Internet a more attractive option.) 

Mark Guzdial (2015) characterizes typical curricula with “most of the learning is 

expected to occur through the practice of programming”, and that there is an assumption 

that students benefit most by being forced to construct their own solutions, despite 

longstanding evidence that this is not an effective way to learn programming. Drawing on 

Kirschner, Sweller and Clark (2006), Guzdial suggests the “minimal instruction” approach 

denies the student direct instruction on how experts program, while expecting them to 

develop expertise independently. 

Kirschner, Sweller and Clark (2006) is in part a rejection of the constructivist 

approach to teaching computer programming. Leveraging off the notion that knowledge is 

personally constructed, constructivism views the students' programming activities as an 
opportunity to diagnose and correct student misconceptions about programming (Ben-Ari, 

1998). Delivery of knowledge in the form of a exiting solution to a problem (according to 

constructivism) would preclude that opportunity. Since this chapter proposes that student 

explanations of solutions (which they may acquire from sources such as the Web) might 

replace student code composition as assigned work, it excludes the use of programming as 

constructivist activity. 

 

3. THE MEANING OF PROBLEM-SOLVING 

 
It appears that problem-solving skills are typically missing as content from curricula 

focused on having students practice writing programs. One possible reason for this 

oversight is the characterization of problems and solutions in computer science, which 

creates ambiguity around the term problem-solving. 

In the example offered previously, the problem was sorting, and one possible solution 

to this problem is embodied in a program. This is typical of the definition of a problem in 

computing: a problem is defined as creation of a specific algorithm or program to transform 

of a sequence of symbols (input) to another sequence of symbols (output). A solution  

(that is, a program that is a solution to the problem) holds no semantic value in the sense 

that humans might attribute to a problem solution; to give them meaning, input and output  
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symbols require interpretation, which may be provided by humans looking at the data, or by 

connecting them to actuators, sensors or robots that interact with the real world.  

The symbols may indeed mean something – a bank balance, facts, or other abstract 

concepts - but it requires a human interpreter to infer this meaning from symbols; it is not 

part of the algorithm “solution” itself. Nor does the program “understand” the input or 

output, or even its own solution, in any manner that a human might consider 

“understanding”. In fact, when computer scientists talk about program semantics, they are 

referring to the symbol manipulation that is done by the program, not the “meaning” of the 
inputs or outputs, the latter being semantics as a human might use the word. 

As a consequence, a problem in computer science is what a program is intended to 

solve, and the term solution is applied both to the program, and the output from a particular 

run of the program (which solves one instance of the problem represented by one particular 

set of program input); a solution strategy is the algorithmic approach used to solve the 

problem, and may involve techniques that go by familiar names to expert programmers, 

such as backtracking, dynamic programming, greedy, branch and bound, and so on.  

(cf. Cormen, Leiserson, Rivest, & Stein, 2009). 

This is distinguished from what we conventionally mean when we talk about 

problem-solving by humans (or students). Programming or algorithm instructors may wish 

students to acquire knowledge and expertise of algorithmic solution strategies (such as 

backtracking, and so on), which may be discussed and illustrated by examples. But this is 
where confusion in terminology may obscure the curricular objectives. General skills for 

learning how to create programs from such algorithmic strategies are generally not part of 

computing instruction. What we want to induce is a process competence for addressing new 

situations or unseen problems and coming up with solutions (Sternberg, 1995). In the 

context of learning to program, problem-solving is this student's process of creating a 

program, a learning strategy is a particular human skill supporting acquisition of 

competence in that process, one or more problem-solving strategies may be applied during 

the human's problem-solving process, and a solution includes not only the program, but the 

human interpretation of the semantics of the program. 

In computer science jargon, a program solves a problem, but does not use the 

problem-solving process or strategies engaged by the student to write programs. We don't 
want the student to simply be able to do what the computer algorithm they create does –  

a semantically vacuous kind of problem solving that manipulates symbols. We want the 

student to be able to create new programs with new semantics. As far as that process may 

involve learning or problem-solving strategies, they would be entirely distinct from 

strategies employed by an algorithm/program. 

The distinction is fairly obvious when it is attended to, but can be obscured in 

particular context. Exacerbating the situation is the fact that programming problems are 

often posed using natural language, and then the task of the student is to reduce the problem 

to symbol manipulation, and then produce the correct symbol-manipulating algorithms as a 

solution. In producing the algorithm that solves a problem, following instruction in 

algorithmic strategies for solving problems, the students are doing a different kind of 
problem solving which involves different kinds of strategies and skills. The terminology is 

confounded. 

Another relevant distinction between these two meanings of “problem-solving” is that 

the algorithmic solution strategy is observable in the program code. By looking at and 

studying the program, the solution strategy may be extracted and studied. The skills and 

 

strategies for learning to create a program, however, are not self-documenting: they are not 
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present in the program code, but have hopefully been induced in the student's skill set by 

making the student write programs. It would be natural for a programming expert, when 

discussing solutions or methods, to refer to the code as an illustration of the solution 

technique, rather than to refer to programming skills that are not part of an inspectable 

software artifact. Thus, relevant skills may be overlooked. This makes it difficult to 

distinguish the artifact (code or algorithm) from the act, process or skill of creating the 

artifact. For example, an evaluator or grader will be aware that a student's program solution 

to the sorting problem needs to solve all possible sorting sequences, not just a specific 
sorting sequence (what computer scientists call a problem instance). If a student has 

produced such a correct program, a grader may infer the student has applied and 

internalized an abstract problem-solving strategy: otherwise, (goes the faulty reasoning)  

the student could not have produced the program. 

Further conflating the problem-solving needed to create programs with the program 

solution are learning theories that attempt to relate the two (cf. Robillard, 1999).  

Wing (2006), for example, posits that learning skills can be structured in an algorithmic 

manner using the moniker “Computational Thinking” (Michaelson, 2015). Literature on the 

psychology of programming also brings together the psychological aspects of programming 

and the computational aspects of psychology (cf. Coles, & Ollis, 2015). While including 

skill acquisition, more of this work relates to modeling expert behavior than to learning. 

The type of learning strategies advocated by learning theorists are easily 
distinguishable from what computer programs do. Falkner et al. (2014) adduce  

self-regulatory skills computing students need to learn computer programming, such as 

planning, time management, identifying sub-goals, problem decomposition, task difficulty 

assessment, knowledge building, as well as meta-strategies such as strategy assessment. 

They also cite the ability to separate program design from program coding activities as a 

computer programming skill. Bergin, Reilly, and Traynor (2005) provide evidence of 

connection between general meta-cognitive strategies and computer programming 

performance, while Lichtinger and Kaplan (2011) claim self-regulated learning strategies 

are domain specific. (Caruso, Hill, VanDeGrift, & Simon, 2011) provides evidence that 

successful student programmers develop their own individualized and idiosyncratic 

application of problem-solving and learning strategies. None of these are discussing 
algorithmic strategies embedded in the code of introductory computer programs. 

 

4. INSTRUCTIONAL APPROACH 

 

We address the concern regarding student finding assignment solutions online, in part 

by recognizing that the programming strategies themselves do not represent program 

creation or problem-solving skills. As pedagogy, this draws on observations that studying 

(or “reading” code) produces many of the learning outcomes conventionally pursued by 

assigning programming tasks to students (e.g. Corney et al, 2014; Kirschner, Sweller,  
& Clark, 2006; Guzdial, 2015). 

Direct instruction of meta-cognitive learning skills, self-regulatory skills and 

problem-solving strategies is advocated by some researchers, and they develop explicit 

instructional materials for those objectives. Allwood (1986), for example, suggests 

scaffolding techniques to help students to explore new problem-solving strategies instead of 

relying on familiar approaches.  
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However, adoption of such instruction places two important demands on instruction:  

a particular theory and approach must be selected among competing learning theories, 

yielding particular strategies to be included; and scheduled time must be available to 

include new instruction on problem-solving strategies in the course work. The approach 

discussed here avoids explicit instruction in learning skills or problem-solving strategies, 

but still attempts to move away from reliance on programming practice as the means to 

develop programming expertise. A main objective is to reduce the utility of students 

copying solutions “from the web” without comprehension of the underlying code.  
The adopted approach requires students to explain their program-code solutions in a 

different form than they can readily find on the web. This intentionally separates the 

comprehension or understanding of a solution from its expression as program code.  

The following or a similar address to students is repeated during the course: “Unlike other 

programming courses you may have done, I don't care how you get the code you use, as 

long as you have permission and you attribute it appropriately in compliance with 

copyright and other legal requirements. While you might benefit more from composing 

your own, you can get code from friends, off the Internet or even purchase it. The quality of 

the code you submit is important, but your evaluation will be based on the understanding 

and explanation of the code provided in your submission. I will be calling this aspect of 

submission the code design.” 

By shifting evaluation from the quality of the program code to the competency 
reflected in the individual student's explanation, we attempt to effect two things:  

(1) eliminate students obtaining credit for code they can acquire but do not understand and 

(2) force some (perhaps implicit) attention by the student and the instructor on how the 

student develops an understanding of the program code. In other words, we attempt to 

engage problem-solving strategies even if they are not explicitly discussed.  

In itself the emphasis on design or an abstract description of program code is not 

innovative. Descriptions of software design are essential in advanced computer subjects 

such as software architecture. The innovation here is using design descriptions rather than 

implemented program code as evidence of programming competency, even in more 

introductory courses where it is not usual.  

Work in concept mapping (Novak and Gowin, 1984) supports the belief that students 
are forced to engage and reify new knowledge when they have to express textual material in 

a different (diagrammatic) form. Here we pursue an analogous outcome using program 

design descriptions as the expression of the text of computer program code. Concept 

mapping has been applied for diagnosing student misconceptions (Sanders, Boustedt, 

Eckerdal, & McCartney, 2008) and for teaching programming concepts using Unified 

Modelling Language (UML) (Ferguson, 2003; Tabrizi, Collins, Ozan, & Li, 2004). 

Essentially, the claim is that in representing program code in a different form (UML), 

students will have to form a deep understanding of the source material. 

Using UML to create abstract models of software systems would be a skill introduced 

to students at some point in an academic degree stream for computer programming.  

The difference here is to treat tools such as UML as a way to establish student 
comprehension of other academic material, rather than as part of the material themselves. 

To illustrate the difference in using these representations, consider the JAVA program code 

snippet shown in figure 1. 
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Figure 1. Taken from openjdk JAVA 6b14 listing for AbstractCollection.contains method. 
 

 public boolean contains(Object o) { 

 Iterator<E> e = iterator(); 

 if (o==null) { 

 while (e.hasNext()) 
 if (e.next()==null) 

 return true; 

 } else { 

 while (e.hasNext()) 

 if (o.equals(e.next())) 

 return true; 

 } 

 return false; 

 } 

 

Figure 1 is an example of a code segment provided with the standard JAVA libraries 

used by virtually all JAVA programmers. In this case, it provides an example of iteration,  
a sequential programming construct easily expressed in consecutive lines of code. It is 

difficult to imagine a more concise representation of iteration than the original source code. 

Depicting this concept in UML would be less concise or expressive than the original code. 
 

Figure 2. UML representation of JAVA interfaces in the Collections framework. 
 

 
 

Figure 2, in contrast, uses a notation called a UML class diagram to depict 

relationships between a set of code constructs called interfaces. In the JAVA code,  

these relationships are scattered throughout the standard JAVA libraries, in lines of code 

that are non-consecutive and span may pages. It requires some minimal competence to find 

and conceptually synthesize the relationships depicted in figure 2. UML is much more 

concise than the original code in presenting this design aspect of the program code. 

Our conceit is that requiring students to translate or express aspects of their program 
solution into UML encourages understanding and thinking about the program code. 

Efficient expression of programming concepts is not the point, although that helps motivate 

student use of the notation. Forcing the students to produce correct representations and 
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make choices about what code aspects to convey means they have to study and understand 

the code, even if it is not their own original composition. Rather than simply mimic or  

cut-and-paste from a compendium of coding solutions, students have to internalize the 

solution well enough to express it in a radically different notational form. The struggle to 

acquire new understanding is forced on them in a way that cannot be circumvented by 

generalized learning strategies. It is not the graphical depiction that is important, any more 

than it is the running program that is important: it is the students' understanding that is 

engendered by the task of producing an original explanation of the code that is important. 
Although our hope and belief is that students adopt successful problem-solving 

strategies without them being explicitly taught or evaluated, the need to model the use of 

notational explanations for the students is clear. Figures 3 and 4 are typical classroom 

materials involved in such modeling. Figure 3 depicts some aspects of a programming 

solution to a posed problem. In addition to discussing and critiquing the solution depicted, 

the choices made in constructing the diagram are also discussed with the students: what 

elements are included, and what is left out for clarity. What unimportant details are omitted. 

What structures are important to include and which are not. How additional concepts might 

be included. Certainly such discussion implicitly engages some relevant domain-specific 

problem solving skills, such as problem decomposition.  
 

Figure 3. A UML diagram of a code solution that was critiqued with students. Diagram illustrates 
one particular design concept used in the coded solution. Students use similar diagrams in their  

own submissions. 
 

 
 

Since UML is poor at presenting certain aspects of programming solutions, (as discussed 

with respect to figure 1), programming code is still discussed and analyzed as part of class 

presentations where they are the better choice for representing solution concepts. Figure 4 

shows some code used in class presentation to discuss different aspects of the same solution 

depicted in figure 3. For other aspects, natural language is more effective than either UML 

or th programming language, and students are directed to consider what is best conveyed by 

these alternatives: UML, program code excerpts, and natural language. Choice of these 

alternatives representational choices is also incorporated into class presentations and 

discussion, impressing on the students that these choices also reflect their understanding 

and the quality of their work submissions. 
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Figure 4. Part of the code solution represented in figure 3. 
 

 
 

5. CONCLUSION/DISCUSSION 

 

The described approach was piloted in a third year course titled “COMP3718: 

Programming in the Small” at Memorial University, Canada during the first semester 

January-April of 2015. The primary changes from previous course offering were (1) the 

emphasis on analyzing and understanding program code rather than composing code;  

(2) evaluation based on students' original explanations of programs rather than the quality 

of student-authored programs; and (3) the provision that student may incorporate code 
recruited from any legitimate source rather than having to compose their own. 

The principle distinctions from pedagogy reported in the literature which also 

emphasize student analyzing and reading (as opposed to only composing) program code are 

(1) there was no explicit instruction related to problem-solving skills or learning strategies 

other than algorithmic-programmatic solutions to software problems (2) while coding 

standards were part of the course, the code explained in student assignments was sourced 

(chosen or created) by the students themselves, instead of being selected by the instructor 

for its instructional merit (3) there was no staging that required students to advance past a 

“code reading and comprehension” stage to a nominally advanced “compose your own” 

stage in learning programming (Guzdial, 2015). 

No formal data collection occurred during this pilot, but some general observations 

are offered. Compared to previous offerings, both student grades and institutional student 
evaluations of course instruction were slightly improved. Without controls over other 

instructional factors, improvement cannot be attributed to any particular cause; however, 

/** 

 *  

 * This adapter sticks to any component and captures mouse click events. 

 * This should be the last one tried. 

 * @author brown 

 * 

 */ 

class ComponentAdapter implements ListenerAutoAdapter { 

 MouseAdapter adapterToDelegateListener; 

  public ComponentAdapter() { 

  adapterToDelegateListener = new MouseAdapter() { 

    @Override 

    public void mouseClicked(MouseEvent e) { 

     MultipleActionListener.this.actionReaction(e); 

    } 

  }; 

 } 

 @Override 

 public boolean delegate(Component j){ 

  j.addMouseListener(adapterToDelegateListener); 

  return true; 

 } 

 @Override 

 public boolean undelegate(Component j){ 

  j.removeMouseListener(adapterToDelegateListener); 

  return true; 

 } 

} 
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there is at least a subjective impression that the modifications discussed in this chapter did 

no noticeable harm to student performance.  

One informal observation is that many students had difficulty adjusting to the shift in 

evaluation criteria. At mid-term, (after half the assignments were completed), some 

students' comments on their assignment evaluations reflected conventional expectations.  

A paraphrase of one comment is “My code works perfectly, so I don't understand how I can 

have a fail on the assignment”. Similarly, a student who lost marks for inadequate 

explanation wrote “How do you know I didn't do that?” The point that the scheduled marks 
were for explanation of the code, not for code quality, had not been understood. In personal 

communication reviewing this issue with some students, several agreed with the suggestion 

that their expectations were driven by experience in prior courses. An alternative 

suggestion, that students enjoy programming code and not creating descriptions,  

was generally rejected as an explanation of student expectations by those interviewed. 

These comments warrant additional effort to address student expectations regarding 

evaluation. The following modifications are planned for future instruction: (1) some 

assignments which involve NO code submission, only description of existing code, will be 

used to prime student expectations, (2) specific introduction to evaluation schemes,  

(3) an example of a completed and graded assignment will be provided early in the 

semester, (4) lecture time modeling the practices of describing and evaluating code will be 

increased and further integrated into the programming elements of the curriculum.  
A further unprompted comment from several students was that the course was 

challenging in ways they did not anticipate, and in particular that they had difficulty 

“finding examples on the Internet”. This provides some hope that the approach is achieving 

its material purpose of removing the Internet as a compendium of solutions, forcing 

students to apply cognitive effort in study of their submissions.  

A parenthetical observation is that although students were not required to author their 

code submissions, a substantial amount (more than half) of submitted code was indeed 

authored by the students. One speculative suggestion is that it is easier to explain your own 

code than to study, understand and explain someone else's code. It is also commonly 

asserted that programmers enjoy and feel accomplishment in the act of producing their own 

programs. 
This project could now move past a pilot stage, entertaining data collection for several 

outstanding questions. A comparison to approaches that adopt specific learning theories and 

explicit instruction in specific problem-solving skills (e.g. Falkner et al., 2014) could be 

assessed by identifying the problem-solving strategies students are adopting under this 

approach. It would also be interesting to determine how students are sourcing the computer 

program code used in their submissions, to assess how code creation and associated 

programming skills are impacted.  

If generalization of this approach to subject matter other than computing is warranted, 

a difficulty is analogizing the act of describing code to some activity in another discipline. 

The author tentatively suggests that student self-critique and self-evaluation of solutions 

may provide similar constructs, and the general literature on student self-regulated learning 
(cf. Lichtinger & Kaplan, 2011) could be interpreted as supporting this view. 

 

 

 

 

 

 



 
 
 
 
 

Evaluating Programming Competence from Explanations 

75 
 

REFERENCES 

 
Allwood, C. (1986). Novices on the computer: a review of the literature. International Journal of 

Man-Machine Studies, 25(6). 633–658. 
Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of SIGCSE '98 the 

twenty-ninth SIGCSE technical symposium on computer science education, 257-261. 
Bergin, S., Reilly, R., & Traynor, D. (2005) Examining the role of self-regulated learning on 

introductory programming performance. Proceedings of ICER'05 the first international 
workshop on Computing education research, 81-86. 

Brown, E. (2015). Problem solving as program code description Proccedings of International 

Conference on Education and New Developments, 2015, 13-17. 
Coles, M., & Ollis, G. (2015). Message from the chairs. Proceedings of the Psychology of 

Programming Interest Group Annual Meeting, 2015. 
Caruso, T., Hill, N., VanDeGrift, T., & Simon, B. (2011) Experience report: Getting novice 

programmers to think about improving their software development. Proceedings of SIGCSE’11 
42nd ACM technical symposium on computer science education, 493–498. 

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to Algorithms (3rd Ed.). 
Massachusetts Institute of Technology.  

Corney, M., Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., & Murphy, L. (2014) Explain in 
Plain English questions revisited: data structure problems. Proceedings of SIGCSE'14 45th 
ACM technical symposium on Computer science education, 591-596. 

Falkner, K., Vivian, R., & Falkner, N. (2014) Identifying computer science self-regulated learning 
strategies. Proceedings of the 2014 conference on Innovation & technology in computer science 
education, ITiCSE '14, 291-296 

Ferguson, E. (2003) Object-oriented concept mapping using UML class diagrams. Journal of 
Computing in Colleges, 18(4). 344-354. 

Guzdial, M. (2015) What's the Best Way to Teach Computer Science to Beginners? Communications 

of the ACM, 58(2), 12-13. 
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006) Why minimal guidance during instruction does 

not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, 
and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. 

Lichtinger, E., & Kaplan, A. (2011) Purpose of engagement in academic self-regulation.  
New Directions for Teaching and Learning, Special Issue on Self-Regulated Learning, 
2011(126), 9–19. 

Michaelson, G. (2015) Teaching Programming with Computational and Informational Thinking. 

Journal of Pedagogic Development, 5(1), 51-66. 
Mitra, S. (2015). Minimally invasive education: Pedagogy for Development in a Connected World.  

In Rothermel, P. (Eds.), International Perspectives on Home Education (pp. 254-277). New 
York: Palgrave-McMillan. 

Novak, J., & Gowin, D. B. (1984) Learning how to Learn. Cambridge University Press.  
Robillard, P. N. (1999). The role of knowledge in software development. Communications of the 

ACM, 42(1), 87-92. 
Sanders, K., Boustedt, J., Eckerdal, A., & McCartney, R. (2008) Student understanding of  

object-oriented programming as expressed in concept maps. ACM SIGCSE Bulletin, 40(1),  
332-2336. 

Sternberg, R. J. (1995). Conceptions of expertise in complex problem solving: A comparison of 
alternative conceptions. In P. A. Frensch & J. Funke (Eds.), Complex problem solving:  
The European Perspective (pp. 295-321). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Sun Microsystems Inc. (2008). Shell Sort Implementation in Java, Retrieved May 4, 2015 from 
http://www.java-tips.org/java-se-tips/java.lang/shell-sort-implementation-in-java.html  

Tabrizi, M. N. H., Collins, C., Ozan, E., & Li, K. (2004) Implementation of object-orientation using 

UML in entry level software development courses. CITC5 '04 Proceedings of the 5th 
conference on Information technology education, 128-131. 

http://www.java-tips.org/java-se-tips/java.lang/shell-sort-implementation-in-java.html


 
 
 
 
 
E. Brown 

76 
 

Treude, C., Barzilay, O., & Storey, M. (2011). How do programmers ask and answer questions on the 
Web? Proceedings of ICSE'11 33Rd International Conference on Software Engineering,  
804-807. Waikiki: Honolulu. 

Veenman, M., Elshout, J., & Meijer, J. (1997). The generality vs. domain-specificity of metacognitive 
skills in novice learning across domains. Learning and Instruction, 7(2), 187–209. 

Wing, J. M. (2006) Computational Thinking, CACM Viewpoint, March 2006 (pp. 33-35).  
Winne, P. (1995). Inherent details in self-regulated learning. Educational Psychologist, 80(4),  

284–290. 

 

 

AUTHOR(S) INFORMATION 

 
Full name: Edward Brown  
Institutional affiliation: Memorial University of Newfoundland  
Institutional address: Elizabeth Avenue, St. John's. NL, CANADA, A1C 5S7 

Short biographical sketch: Dr. Brown is an Associate Professor of Computer Science and holds a 
Ph.D. in Education from the University of Toronto, and a J.D. in Law from the University of Victoria. 
Canada. His research interests revolve around software law, privacy, and mobile applications.  


